
GDB Cheat Sheet

RUNNING

gcc -g -o program program.c Compile your code with debugging information

gcc -On -o program program.c
Compile code using Optimization On <n:0-3>:
Be very careful if you use On (n>2) you will have difficulties
in debugging code.

gdb <program> [core dump] Start GDB (with optional core dump).

gdb --args <program> <args> Start GDB and pass arguments

gdb --pid <pid> Start GDB and attach to the process.

set args <args...> Set arguments to pass to the program to be debugged.

run <args> Run the program to debug, possible to pass arguments.

quit / q Quit the debug mode.

BREAKPOINTS

break <function/line/file:line> Set a new breakpoint.

delete <breakpoint#> Delete a breakpoint.

clear Delete all breakpoints.

enable <breakpoint#> Enable a breakpoint.

disable <breakpoint#> Disable a breakpoint.

WATCHPOINTS

watch <function/line/file:line> Set a new watchpoint.

enable <watchpoint#> Enable watchpoint.

disable <watchpoint#> Disable watchpoint.

delete <watchpoint#> Delete watchpoint.

CONDITIONS

break/watch <function/line/file:line>
if <condition>

Break/watch at the given location if the condition is met.

Conditions can be a C expression that evaluates a true or
false.

condition <breakpoint#> <condition> Set/change the condition of an existing break- or
watchpoint.

STACK ANALYSIS

backtrace / bt / where Show call stack.

backtrace full / bt full
where full

Show call stack, also print the local variables in each
frame.

frame <frame#> Select the stack frame to operate on.

list / l Display the first 10 lines of program code.

list file.c:n Display form line (n-5) to (n+5) of the file.c program.

layout src / asm Display the c/asm program code.

layout split Display both assembler and source code.

layout reg Display CPU registers status.

INFORMATIONS

info locals Display all local variables content.

info registers Display CPU registers values.

info args Display all arguments in use.

info threads Display a summary of all threads currently in your
program.

info signals List all signals and how they are cur- rently handled.

Visit https://freecoder.dev for more information, training, and tutorials

https://freecoder.dev

GDB Cheat Sheet

STEPPING

step / s <x: number_of_steps> Go to the x next instructions into function line code.

next / n <x: number_of_steps> Go to the x next instructions over function line code.

finish Continue until the current function returns.

continue Continue normal execution until the next watchpoint or
breakpoint.

MEMORY ACCESS

x <address or &variable> Examine the memory address value.

x/nts <address or &variable>

Examine memory mapping content:
● n: number of memory cells to show.

● t: Type of the data to show:

○ a: Pointer.
○ c: Read as integer, print as character.
○ d Integer, signed decimal.
○ f: Floating point number.
○ o: Integer, print as octal.
○ s: string.
○ t: Integer, print as binary.
○ u: Integer, unsigned decimal.
○ x: Integer, print as hexadecimal.

● s: Size of the data to show:

○ b: Byte
○ h: Half-word (2 bytes)
○ w: Word (4 bytes)
○ g: Giant word (8 bytes).

PROCESS & THREAD & SIGNAL

gdb --pid <pid> Start GDB and attach to the process.

attach <pid> Attach GDB to a running process.

detach <pid> Release process from GDB control. Detaching the process
continues its execution.

set follow-fork-mode mode

parent: The original process is debugged after a fork. The
child process runs unimpeded.

child: The new process is debugged after a fork. The parent
process runs unimpeded.

ask: The debugger will ask for one of the above choices

show follow-fork-mode Display the current debugger response to a fork or vfork
call

Kill Kill the children's process.

thread thread_nb Make thread number thread_nb the current thread.

handle <signal> <options>

Set how to handle signals.

Options are:
● (no)print: (Donʻt) print a message if signals occur.
● (no)stop: (Donʻt) stop the program if signals occur.
● (no)pass: (Donʻt) pass the signal to the program.

VARIABLES

print <variable name> Display variable content.

print *<array_name>@length Display arrays values.

print $register_name Display a CPU register_name value.

set var <variable_name>=<value> Change the variable content to the
given value.

print $register_name Display a CPU register_name value.

return <expression> Force the current function to return im-
mediately, passing the given value.

Visit https://freecoder.dev for more information, training, and tutorials

https://freecoder.dev

